Chapter 8

THE NOBLE GASES

M.F.A.Dove

8.1	THE ELEMENTS	462
8.2	XENON(II)	463
8.3	XENON(VI)	464
REFERENCES		466

8.1 THE ELEMENTS

The He-benzene and He $_2$ -benzene van der Waals complexes have been investigated spectroscopically under conditions (rotational cooling achieved by supersonic expansion) in which over 95% of the molecules are in the lowest rovibronic level. In both complexes the helium atoms are found to lie in the C_6 symmetry axis away from the plane of the benzene ring. Weiss et al. have shown that the novel inclusion compounds $CdPt(CN)_6.1.046Kr$ and $CdPt(CN)_6.1.128Xe$ are formed when crystals of the host compound were grown in the presence of the noble gas at 64 bar pressure: only half of the 4.7% diameter cavities are occupied by guest atoms. The concentration of radon in a variety of geothermal sources can be related to reservoir characteristics and operating conditions.

Hawkins, Falconer and Bartlett⁴ have compiled a bibliography of the noble gases and their compounds covering all the papers published in years 1962-1976. Seppelt has reviewed some aspects of the chemistry of xenon compounds.⁵ A review paper by Andrews⁶ deals with the spectroscopy of the transient XeF in matrixes. The passage of an a.c. electric discharge through binary mixtures of the noble gases and SF produces the monofluorides MF, M = Ar, Kr or Xe, in high yield.⁷⁶ Kuen and Howorka⁸ have commenced an

investigation of the properties of rare gas halide ions. The systems studied were $Kr(Ar)+Cl_2$, $Kr(Ar)+CF_4$, $Kr+SF_6$, and $Ar+I_2$ with mixture ratios varying between 19:1 and 1:10. The ions $KrCl^+$, KrF^+ , $ArCl^+$ and ArI^+ were observed but under widely differing reaction conditions, from which the authors have inferred the likely mechanisms of formation.

8.2 XENON(II)

A large number of xenon compounds have been studied by Mössbauer spectroscopy of 129 Xe. The quadrupole interaction strengths (Q.S.) of all xenon(II) compounds with linear F-Xe-F groups lie close together, but a small increase of the Q.S. with the acceptor strength of the adduct group was observed. For compounds with F-Xe-O- and -O-Xe-O- groups a reduction of Q.S. was established. Xenon(IV) compounds exhibit a Q.S. similar in magnitude to that of xe(II) compounds but quite distinct from that of xenon(VI) derivatives.

The collision of electron beams in the energy range O to 20eV with XeF₂ molecules results in the production of F⁻, F₂ and XeF⁻. The ion currents due to F₂ and XeF⁻ are 10^3 and 10^2 times smaller than that for F⁻. Traces of XeF₂ and XeF₃ were also detected. The standard heat of formation of XeF₂ has been determined¹¹ by the reaction with solid germanium metal in a calorimetric bomb, equation (1). The value obtained, -163.2 ± 1.3 kJ mol⁻¹, agrees well with that, -162.8 ± 0.9 kJ mol⁻¹, obtained from the reaction with FF₃.

Bancroft et al. 12 have reported the Xe 3d and 4d shake-up* spectra

$$Ge(s) + 2XeF_2(s) \longrightarrow GeF_4(g) + 2Xe(g)$$
 ...(1)

of gaseous XeF₂. Using ground state M.O.'s for Xe and XeF₂, Rydberg levels for Xe and XeF₂ from the U.V. spectra, and the Xe gas shake-up spectrum, they have constructed a Xe 3d hole state M.O. diagram for XeF₂. The shake-up peaks have been satisfactorily assigned using this diagram.

* In a shake-up process the energy of the photoelectron leaving the molecule is "shared" with valence electrons and a valence electron is promoted to an excited state. A volatile, waxy, white solid with a half-life in a Kel-F container of approximately 30min. at room temperature has been obtained by the reaction of XeF_2 with gaseous CF_3 radicals. 13 The product is believed to be $\operatorname{Xe}(\operatorname{CF}_3)_2$ and has been characterised by F analysis and by i.r. and 19 F n.m.r. spectra of partially decomposed samples. Decomposition of the novel compound, the first reported to contain carbon σ bonded to xenon, takes place in Kel-F at 20° C according to equation (2).

$$Xe(CF_3)_2 \longrightarrow XeF_2 + C_nF_m$$
 ...(2)

Goncharov and coworkers 14 have calculated the successive one-electron reduction potentials of XeF_2 in aqueous solution on the basis of the available thermodynamic literature data and correlations. They have proposed that the active intermediate involved in oxidation reactions of XeF_2 in aqueous solutions is XeO, on the basis of a study of competitive reactions. 15

The BF $_3$.Et $_2$ O-initiated fluorination of norbornene by XeF $_2$ in dichloromethane produces the novel 2-endo-5-exo- and 2-exo-5-exo-difluoronorbornanes instead of the well known anti- and syn-2,7-difluoronorbornanes. ¹⁶ The use of ether as solvent yields the 2,7-difluoro isomers, which are then isomerised to the other pair of isomers by BF $_3$.Et $_2$ O. Lempert and colleagues ¹⁷ have investigated the use of XeF $_2$ as an oxidant for the determination of Cr $^{3+}$ and Mn $^{2+}$. Nesmeyanov et al. ¹⁸ have reported the fluorination of aryl bromides to the related BrF $_2$ -derivatives by the action of XeF $_2$ in the presence of BF $_3$.Et $_2$ O or HF in CH $_2$ Cl $_2$ or SO $_2$. The yields of these reactive intermediates was claimed to be < 10% at -70°C. Chemical evidence for their formation was provided by the coupling reactions with arenes to give diarylbromonium salts.

8.3 XENON(VI)

Mössbauer studies of 129 Xe in xenon(VI) compounds have shown that in this oxidation state the quadrupole interaction strengths (Q.S.) are appreciably different from those of the two lower oxidation states. In XeF₆ the Q.S. is indicative of appreciable distortion from octahedral coordination: even larger values were found for the adducts and for compounds with mixed O and F lignads. Xenon(VI) fluoride reacts very slowly with B(OTeF₅)₃ (molar ratio 1:2) according to equation (3).

$$XeF_6 + 2B(OTeF_5)_3 \xrightarrow{-40^{\circ}C} 2BF_3 + Xe(OTeF_5)_6 \dots (3)$$

 $Xe(OTeF_5)_6$, precipitates as a red-violet, photosensitive solid; thermal decomposition at $-10^{O}C$ or photolytic (daylight) decomposition, even at $-230^{O}C$, produces $Xe(OTeF_5)_4$ and $F_5TeOOTeF_5$. A slow hydrolysis reaction of the compound was also reported; the hydrolysis product was shown to be $OXe(OTeF_5)_4$, which was also prepared from the reaction between $OXeF_4$ and $B(OTeF_5)_3$.

The use of XeO_3 as an oxidant in inorganic analysis, for Fe^{2+} and N_2H_4 , has been investigated by Lempert et al.:¹⁷ they also presented kinetic data for the decomposition of XeO_3 . A short-lived molecule or radical, which is a product of the H_2O_2 - XeO_3 reaction, is apparently responsible for the oxidation of Np^{5+} to Np^{6+} in perchloric acid.²⁰

REFERENCES

- S.M.Beck, M.G.Liverman, D.L.Monts, and R.E.Smalley, J. Chem. Phys., 70(1979)232.
- M.Kämper, M.Wagner, and A.Weiss, Angew. Chem. Int. Ed. Engl., 18 (1979) 486.
- P.Kruger, G.Warren, and B.D.Honeyman, Proc. Int. Conf. Nucl. Methods Environ. Energy Res., 3rd. (1977) 225 (Chem. Abs., 92(1979) 8810).
- D.J.Hawkins, W.E.Falconer, and N.Bartlett, "Noble Gas Compounds", Bibliography 1962-1976, (1978) I.F.I. Plenum Data Corp., New York.
- 5 K.Seppelt, Acc. Chem. Res., 12(1979)211.
- 6 L.Andrews, Ber. Bunsenges. Phys. Chem., 82(1978)65.
- 7 A.K.Shuaibov and V.S.Shevera, Zh. Tekh. Fiz., 49(1979)1747.
- 8 I.Kuen and F.Howorka, J. Chem. Phys., 70(1979)595.
- H. de Waard, S.Bukshpan, G.J.Schrobilgen, J.H.Holloway, and D.Martin, J. Chem. Phys., 70(1979)3247.
- 10 G.M.Begun and R.N.Compton, Int. J. Mass Spectrom. Ion Phys., 30(1979)379.
- V. Ya. Leonidov, I.V. Timofeev, and Yu. M. Kiselev, Dokl. Akad. Nauk. SSSR, 248(1979)1375.
- 12 J.S.Tse, D.J.Bristow, G.M.Bancroft, and G.Schrobilgen, Inorg. Chem., 18(1979)1766.
- 13 L.J.Turbini, R.E.Aikman, and R.J.Lagow, J. Am. Chem. Soc., 101 (1979) 5833.
- A.A.Goncharov, Yu. N. Kozlov, and A.P.Purmal', Russ. J. Phys. Chem., 53(1979)1541.
- 15 A.A.Goncharov, Yu. N.Kozlov, and A.P.Purmal', Russ. J. Phys. Chem., 53(1979)1648.
- 16 S.A.Shackleford, Report 1978, FJSRL-TR-78-0008, (Chem. Abs.,
 91(1979)9965).
- S.A.Lempert, D.B.Lempert, N.N.Aleinikov, and P.K.Agasyan, Zh. Obshch. Khim., 49(1979)2172.
- 18 A.N.Nesmeyanov, I.N.Lisichkina, A.S.Kulikov, A.N.Vanchikov, T.P.Tolstaya, and V.A.Chertkov, Doklady Chem., 243(1979)618.
- 19 D.Lentz and K.Seppelt, Angew. Chem. Int. Ed. Engl., 18(1979)66.
- 20 V.P.Shilov, Radiokhim., 21(1979)449.